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We study the coupled-qubit oscillation driven by an oscillating field. When the period of the nonresonant
mode is commensurate with that of the resonant mode of the Rabi oscillation, we show that the controlled-
NOT �CNOT� gate operation can be demonstrated. For a weak coupling the CNOT gate operation is achievable
by the commensurate oscillations, while for a sufficiently strong coupling it can be done for arbitrary parameter
values. By finely tuning the amplitude of oscillating field it is shown that the high fidelity of the CNOT gate
can be obtained for any fixed coupling strength and qubit energy gap in experiments.
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I. INTRODUCTION

The universal gate for quantum computing consists of the
single qubit and the entangling two-qubit operations. Usu-
ally, electromagnetic oscillating fields such as microwave
fields, laser pulses, and oscillating voltages have been used
for single qubit operations. The atomic states of cavity-QED
�Ref. 1� and ion-trap2 qubits are used as a natural basis of
qubit states. In these cases the quantum Rabi-type oscillation
can be analyzed in an approximation, called the rotating
wave approximation �RWA�. Similarly, the semiclassical
Rabi-type oscillation of qubits of the artificial atomic states
such as the superconducting charge qubit employed in the
circuit-QED quantum computing3 and the flux qubit4 can
also be analyzed in this approximation.

We study the coherent two-qubit oscillation driven by an
oscillating field. The two-qubit oscillation enables the two-
qubit gate for the quantum computing. Among the two-qubit
gates the controlled-NOT �CNOT� gate is the most basic
two-qubit operation for the universal gate.5 The CNOT gate
operation was achieved in superconducting qubits with Ising-
type interaction without driving oscillating field.6 The oscil-
lating field driven CNOT gate operation in superconducting
qubits has recently been reported, but the fidelity is not so
high due to the weak coupling strength between qubits.7 In
this study we propose a scheme for the CNOT gate operation
between coupled qubits under an oscillating field for general
Ising-type coupling strength. We discuss the CNOT gate op-
eration for both the strong and weak coupling strength and
show that the high fidelity of CNOT gate can be obtained
even for a weak coupling.

The CNOT gate uses the discriminating operations corre-
sponding to different states of control qubit. Depending on
the control qubit states, the coupled-qubit state demonstrates
the Rabi-type oscillation for the resonant oscillating field or a
non-Rabi-type oscillation. During the � rotation the target
qubit state flips to the other qubit state for a control qubit
state, while for the other control qubit state the target qubit
state goes back to the original state before reaching the other
state. Though the latter oscillation is far from the Rabi-type
oscillation, the commensurate oscillations can give rise to
the CNOT gate operation. By using the commensurate mode
oscillations we obtain high fidelity for the CNOT gate opera-

tion. We show that for a weak coupling a high performance
CNOT gate can be achieved by tuning the parameters, while
for a sufficiently strong coupling the maximum fidelity can
be obtained regardless of the values of system parameters.
The maximum fidelity for a weak coupling can be obtained
for any fixed coupling strength and qubit energy gap by
finely tuning the amplitude of oscillating field in an experi-
mental setup. This scheme of using the commensurate oscil-
lation is quite general, so it is applicable to the natural
atomic qubits as well as the solid state qubits.

II. HAMILTONIAN OF COUPLED QUBITS

The Hamiltonian of a two level system �qubit a� driven by
an oscillating field with frequency � is given by

Ha = − Ez
a��,t��z − tq

a�x, �1�

where

Ez
a��,t� =

Ea���
2

+ g cos �t , �2�

� is the external variable controlling the qubit energy levels
and �z,x are the Pauli matrices. Here g is the coupling
strength between the qubit and the oscillating field which is
proportional to the amplitude of the oscillating field, tq is the
tunneling amplitude between different �pseudo� spin states,
and Ea���=E↑

a���−E↓
a���. The qubit energy gap Ea��� can be

controlled by �, and for a particular value of �0 the qubit can
be brought to the degeneracy point, E↑

a��0�=E↓
a��0��E0

a.
At this point the dominant energy scale is the tunneling

energy tq
a and, if we introduce the coordinate transformation,

�0�= ��↓ �+ �↑ �� /�2 and �1�= ��↓ �− �↑ �� /�2, we have the
Hamiltonian

Ha = E0
a�0��0� + E1

a�1��1� + g cos �t��1��0� + �0��1�� , �3�

where E0�1�
a =E0

a� tq
a. Hence the resonant microwave with fre-

quency �=2tq
a gives rise to the Rabi-type oscillation between

the qubit states, �0� and �1�.
When two qubits �qubits a and b� are coupled, the Hamil-

tonian for coupled qubits in the basis of ��↓ � , �↑ �	 can be
written as
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H = Ha
� I + I � Hb − tq

a�x � I − tq
bI � �x + J�z � �z,

�4�

with the Ising-type coupling strength J �Refs. 8 and 9�

J =
1

4
�E↓↓ + E↑↑ − E↓↑ − E↑↓� . �5�

Here, Ess� are the energy levels of coupled qubits,
Ess���a ,�b�=Es

a��a�+Es�
b ��b��J �+ for s=s� and − for s=

−s��, where �a and �b are the control variables for qubit a
and b, respectively. We here neglect the two-qubit tunneling
term, tq

ab�s ,s���−s ,−s��, because it is negligibly small for
usual parameter regimes. This term gives rise to the XY-type
interaction which enables the SWAP gate operation rather
than the CNOT gate.

We can rewrite the Hamiltonian as

H = 

s,s�

Fss���a,�b,t��s,s���s,s�� − tq
a�s,s���− s,s�� − tq

b�s,s���s,

− s�� , �6�

where −s is the opposite spin of s, and

F↓↓��a,�b,t� = E↓↓��a,�b� − 2g cos �t ,

F↓↑��a,�b,t� = E↓↑��a,�b� ,

F↑↑��a,�b,t� = E↑↑��a,�b� + 2g cos �t ,

F↑↓��a,�b,t� = E↑↓��a,�b� . �7�

Afterward, we will omit �a ,�b in Ess���a ,�b� for simplicity.
To perform a CNOT gate operation, the system param-

eters should be adjusted. We consider the situation that the
external variables are adjusted in a way that �i� the energy
gap �E=Ess�−E−ss� between different control qubit �qubit a�
states is large and �ii� the target qubit �qubit b� is at a degen-
eracy point, E↓↓=E↓↑. This situation is usual for the CNOT
gate operation of coupled qubits.6,8 In this case the tunneling
process tq

b between different target qubit states takes a role,
while tq

a between different control qubit states is negligible
due to the large energy level difference �E. Consequently,
the two-qubit Hamiltonian H becomes block diagonal.

Figure 1�a� shows the energy levels Ess� as a function of
�b, where we choose �a such that �Ess�−E−ss��� tq

a and thus tq
a

can be negligible. In the figure there are two degeneracy
points; lower degeneracy point where E↓↓=E↓↑ and upper
degeneracy point where E↑↓=E↑↑. By adjusting the variable
�b, the coupled-qubit states can be brought to one of these
degeneracy points. Here the distance between these degen-
eracy points is related to the coupling strength between two
qubits.6,8

Here we introduce a coordinate transformation,

V = exp�−
i

2
�y	↓� � exp�−

i

2
�y	↑� , �8�

with tan 	s=2tq
b / �Es↓−Es↑� in order to couple the oscillating

field with the off-diagonal elements of the qubit Hamil-
tonian. Then the Hamiltonian H=V−1HV becomes

H = 


=0,1


E
0�t��
0��
0� + E
1�t��
1��
1� + �
g cos �t��
0�

��
1� + �
1��
0��� , �9�

where

E

��t� = E

�
0 − 
�− 1�
 + �− 1�
�

�g cos �t �10�

with �0=sin 	↓, 
0=cos 	↓, �1=sin 	↑ and 
1=cos 	↑. The
two-qubit states �

�� are given as

�
0� = cos�	s/2��s↓� + sin�	s/2��s↑� ,

�
1� = − sin�	s/2��s↓� + cos�	s/2��s↑� , �11�

where s= ↓ �↑ � for 
=0�1�.
At the lower degeneracy point E↓↓=E↓↑�E0, we have the

relations,

E00
0 = − tq

b + E0, E01
0 = tq

b + E0,

E10�11�
0 =

E↑↑ + E↑↓
2

���E↑↑ − E↑↓
2

�2

+ �tq
b�2, �12�

and

�

�

FIG. 1. �Color online� �a� Energy levels E

� of coupled qubits,
where 
 ,
�� �0,1	. Ess� with s ,s�� �↓ ,↑	 are shown as thin dotted
lines. The distance between two degeneracy points corresponds to
the coupling strength between two qubits. �b� Occupation probabili-
ties of �

�� states during Rabi-type oscillations at the lower degen-
eracy point where E↓↓=E↓↑. Here we use the parameter values such
that coupling strength J /h=0.6 GHz, qubit energy gap �0 /2�
=4 GHz, and Rabi frequency �0 /2�=600 MHz. The initial state
is chosen as ��0�= ��00�+ �10�� /�2 and the CNOT gate is expected
to be achieved at �t= �odd��.
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	↓ = �/2 and 	↑ = tan−1�tq
b/2J� �13�

by using the relation of Eq. �5�. Since the Hamiltonian H is
block-diagonal, we have

H = H0 � H1, �14�

H0 = −
��0

2
��00��00� − �01��01�� + g cos �t��00��01� + �01�

��00�� , �15�

H1 = −
��1 + 2
1g cos �t

2
��10��10� − �11��11��

+ �1g cos �t��10��11� + �11��10�� , �16�

where

�1 = sin 	↑ = tq
b/��2J�2 + �tq

b�2,


1 = cos 	↑ = 2J/��2J�2 + �tq
b�2. �17�

Here, �1g corresponds to the transition frequency between
�10� and �11� states, while 
1g term induces unnecessary
complicate oscillations. In Fig. 1 the energy gaps are given
as

��0 = E01
0 − E00

0 = 2tq
b,

��1 = E11
0 − E10

0 = 2�
�E↑↑ − E↑↓�/2�2 + �tq
b�2, �18�

where ��0 is the qubit energy gap, and ��1 depends on the
qubit coupling strength through the relation

�1
2 = �0

2 + �4J

�
�2

. �19�

We here consider the case that the oscillating field is resonant
with the energy gap �0 between the states �00� and �01�, i.e.,
�=�0, at the degeneracy point E↓↓=E↓↑. Then this Hamil-
tonian describes the usual Rabi-type oscillation between the
states �00� and �01� with the Rabi frequency �R�g /�, while
the evolution of the states �10� and �11� is far from the Rabi
oscillation, since the energy level difference is not resonant
with the oscillating field frequency, �1��, for a finite cou-
pling strength J.

We again introduce a rotating coordinate such as ��t�
=U�t���t�, where

U�t� = exp� i

2
�0t�z� � exp� i

2
��0t +

2g
1

�0
sin �0t��z� .

�20�

Accordingly, the Schrödinger equation H��t�= i� �
�t��t� is

written as i� �
�t��t�=H̃��t� with H̃=U−1�t�HU�t�

− i�U−1�t��dU�t� /dt�=H̃0 � H̃1, where

H̃0 = � 0 g cos �0te−i�0t

g cos �0tei�0t 0
� , �21�

H̃1 = � �1 − �0 g�1 cos �0te−i��t�

g�1 cos �0tei��t� �1 − �0
� , �22�

and ��t�=�0t+2g
1 sin �0t /�0. From this Hamiltonian we
can obtain the two-qubit oscillation numerically. Also the
dynamics can be analyzed in the RWA.

III. ROTATING WAVE APPROXIMATION

The RWA assumes near resonance ���0 and weak cou-
pling between a qubit and a oscillating field g /���0.10 In
the quantum Rabi oscillation for cavity-QED and ion-trap
qubit, usually g /��0�10−6–10−7. For the usual supercon-
ducting qubits the coupling strength g /��0�O�10−1� �Refs.
3 and 4� which is relatively strong, but we find that the RWA
gives accurate results consistent with our numerical calcula-
tion.

The off-diagonal element of H̃0�1� is written as


H̃0�12 =
g

2
�1 + e−2i�0t� , �23�


H̃1�12 =
g�1

2 

n

Jn�2g
1

�0
�
e−in�0t + e−i�n+2��0t� , �24�

where Jn�x� is the Bessel function of the first kind. In the

usual RWA, the fast oscillating term e2i�0t in 
H̃0�12 is ne-

glected. Similarly we here neglect ein�0t�n�0� in 
H̃1�12,
resulting in

H̃0
RWA = � 0 g/2

g/2 0
� , �25�

H̃1
RWA = ����1 − �0� g�/2

g�/2 ���1 − �0�
� , �26�

where g�=g�1
J0�2g
1 /��0�+J−2�2g
1 /��0��.
Hence the Hamiltonian H̃0

RWA= �1 /2�g�x= �g /��Sx de-
scribes the Rabi oscillation with the Rabi frequency �R

=�0=g /�, while the Hamiltonian H̃1
RWA shows a nonreso-

nant oscillation with the oscillating frequency �1
=���1−�0�2+ �g� /��2. From the relation of Eq. �19� we see
that the behavior of this nonresonant oscillation depends on
the coupling strength J as well as �0 and g.

In Fig. 1�b� we show the resonant and nonresonant oscil-
lations, when �b is adjusted to the lower degeneracy point
where E↓↓=E↓↑. Then a microwave with resonant frequency
�=�0 gives rise to the Rabi oscillation between two states
�00� and �01�, while the states �10� and �11� experience a
nonresonant oscillation. The controlled-NOT gate operation
requires that the target qubit flips for a specific state of con-
trol qubit such that �00�→ �01� while �10�→ �10�. However,
for example, at �t=� in Fig. 1�b� the states �11� and �10�
also evolves during the transition from �00� to �01�. Thus we
cannot expect a good CNOT gate operation in this case.

Although, for �1 different from the resonant value of �
=�0, the oscillation is not a Rabi oscillation, the oscillation
period can be an even integer multiple of that of the resonant
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Rabi oscillation mode for a specific values for parameters g,
J, and �0 which correspond to the oscillating field amplitude,
the coupling strength between qubits, and the qubit energy
gap, respectively. The condition for these commensurate pe-
riods is given by

2n
2�

�1
=

2�

�0
, �27�

as we can see in Fig. 2. This condition determines the value
of g for given values of ��0 ,J�.

From Eq. �27� the value of g for fidelity maxima can be
expressed as

g =
���1 − �0�

��2n�2 − �1
2
J0� 2g
1

��0
� + J−2� 2g
1

��0
��2

. �28�

The argument of the Bessel function is written as
2g
1 /��0= �2g /��0�4J /����0�2+16J2. For x→0, the
Bessel functions J0�x� and J−2�x� approach 1 and 0, respec-
tively. Thus, for small J and large �0 the expression of g in
Eq. �28� can be approximated as

g �
1

�4n2 − �1
2
��16J2 + ���0�2 − ��0� , �29�

using Eq. �19�. These expressions of Eqs. �28� and �29� pro-
vide the value for g for the fidelity maxima with given values
of J and �0.

IV. CNOT GATE OPERATION USING
COMMENSURATE MODES

The scheme for CNOT gate operation in this study uses
the non-Rabi oscillations for �10� and �11� states which are
commensurate with the Rabi oscillation for �00� and �01�
states. In Fig. 2 we display the numerical results obtained
from the Hamiltonian in Eqs. �21� and �22�, which show
such commensurate mode oscillations. The initial state,
���0��= ��00�+ �10�� /�2, is driven by an oscillating field with
the resonant frequency �=�0��1.

In experimental situations usually the coupling J and the
qubit energy gap �0 are set to be fixed. Thus the control of
oscillating field amplitude g with fixed J and �0 will be more
desirable. For any given pair of ��0 ,J� one can find a com-
mensurate oscillation by finely tuning the value of g accord-
ing to Eq. �28�. By varying g with fixed �0 and J, we were
able to find a commensurate oscillation mode numerically;
the oscillation period of the �00� and �01� states is twice of
that of the �10� and �11� states 
Fig. 2�a��, which corresponds
to n=1 in Eq. �27�. As g decreases further, another commen-
surate mode with a shorter period appears in Fig. 2�b� �n
=2�. Actually we have found a series of commensurate
modes as g decreases. The values of g obtained numerically
coincide well with those from the RWA in Eq. �28� as shown
in Table I.

The CNOT gate operation is done when the occupation
probability P00�P01� is reversed perfectly from 0.5 �0� to 0
�0.5� at �t= �odd��. At the same time, we can observe that
the probabilities P10 and P11 recover their initial values 0.5
and 0, respectively. As a result, the CNOT operation is real-
ized by using these commensurate oscillations.

Let us consider a concrete example for comprehensive
understanding. For superconducting flux qubits,4,11 g=mB is
the coupling between the amplitude B of the magnetic mi-
crowave field and the magnetic moment m, induced by the
circulating current, of the qubit loop. In order to adjust the
value of g, actually we need to vary the microwave ampli-
tude B, because the qubit magnetic moment is fixed at a
specified degeneracy point. The Rabi-type oscillation occurs
between the transformed states �0�= ��↓ �+ �↑ �� /�2 and �1�

FIG. 2. �Color online� �a� Commensurate oscillations of occu-
pation probability of coupled-qubit states with the initial state,
���0��= ��00�+ �10�� /�2 for g /h=0.265 GHz. The nonresonant os-
cillation modes �P10 and P11� are commensurate with the resonant
modes �P00 and P01�. At �t= �odd��, P10 and P11 recover their
initial values, thus the CNOT gate operation is achieved. Here �0

=g /�, J /h=0.5 GHz, and �0 /2�=4.0 GHz. �b� Higher order
commensurate modes for smaller g /h=0.122 GHz with the same J
and �0.

TABLE I. The values of g /h for the main fidelity maxima �n=1� obtained from numerical calculation and
from the RWA of Eq. �28� for various coupling J and qubit energy gap �0. For small �0 and large J the
oscillations are far from the Rabi oscillation. Here, the unit of all numbers is GHz.

J /h 0.1 0.3 0.5 0.7 0.9

g /h Numerical 0.011 0.100 0.265 0.489 0.754

��0 /2�=4� RWA 0.011 0.100 0.264 0.484 0.744

g /h Numerical 0.023 0.185 0.448 � �

��0 /2�=2� RWA 0.023 0.184 0.443 0.752 1.090
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= ��↓ �− �↑ �� /�2. The states of qubits can be detected by shift-
ing the magnetic pulse adiabatically.12 Since these qubit
states are the superposition of the clockwise and counter-
clockwise current states, �↓ � and �↑ �, the averaged current of
qubit states vanishes at the degeneracy point in Fig. 1�a�.
Thus, one can apply a finite dc magnetic pulse to shift the
qubits slightly away from the degeneracy point to detect the
qubit current states.

We now discuss the performance of CNOT gate opera-
tion. The fidelity for CNOT gate operation is given by F�t�
=Tr�M�t�MCNOT� /4,7 where MCNOT is the matrix for the per-
fect CNOT operation and M�t� is the truth table amplitude at
time t. In Fig. 3 we plot the fidelity F by varying g ,�0 or J
at �0t=�. In Fig. 3�a� the main and subsidiary maxima cor-
respond to the CNOT operation in Figs. 2�a� and 2�b�, re-
spectively. As shown in Eq. �28� the fidelity maxima are
determined by the three parameters, g ,�0 or J. The series of
maxima correspond to the different n in Eq. �28�. In the inset
of Fig. 3�a� we also show the fidelity as a function of �0.

An interesting behavior of fidelity maxima is shown in
Fig. 3�b� as a function of J, where the fidelity approaches the
maximum as the coupling strength J increases. In the inset
we show the oscillations for various parameters converge to
1, which implies that for sufficiently strong coupling maxi-
mum fidelity for the CNOT gate is achievable regardless of
the values of other parameters. This is because, for a suffi-

ciently strong coupling J��0, thus �1=sin 	↑�0, the off-
diagonal terms in Eq. �16� which induce the oscillation be-
tween two states with 
=1 are vanishing and thus the
occupation probabilities of the �10� and �11� states are not
changed. As a result, the states �10� and �11� preserve their
initial occupation probabilities, while the states �00� and �01�
experience a Rabi-type oscillation. In this limit, the CNOT
gate operation can be achieved with arbitrary parameter val-
ues.

In Fig. 4 we show the Rabi-type oscillation for strongly
coupled qubits. While the P00�P01� is reversed from 0.5 �0�
to 0 �0.5� at �t= �odd��, we can observe that the probabili-
ties P10 and P11 remain their initial values 0.5 and 0, respec-
tively. In this case the parameters need not satisfy the com-
mensurate condition of Eq. �27� for the CNOT gate
operation.

In fact, however, it is not so easy to obtain a sufficiently
strong coupling between qubits in experiment. Instead, we
can achieve a high fidelity of CNOT gate by choosing pa-
rameters satisfying Eq. �28�. In real experiments we can con-
trol the amplitude of the oscillating field g, while the cou-
pling J and energy gap �0 are fixed. In Table I we compare
the numerical results for g at the main fidelity maximum
points �n=1� with those obtained from Eq. �28� in the RWA,
which shows that two values fit well with each other. The
approximate values are a little smaller than the numerical
values and the small deviation tends to increase as J in-
creases and �0 decreases. This can be understood from Eq.
�29� where g increases as J increases and �0 decreases.
Hence for small J and large �0 the RWA and the numerical
calculation coincide with each other, because the RWA works
well in the regime g /���0. For the parameters far away
from this regime the two-qubit oscillation deviates seriously
from the Rabi oscillation and thus the CNOT gate operation
cannot be performed, except the strong coupling limit dis-
cussed.

Though the value of fidelity at the main peak in Fig. 3 is
close to the maximum value of 1, it has small deviation,
�F=1−F. In Fig. 5 we plot the fidelity error �F for various
values of ��0 ,J� at �0t=�. For large �0 and small J the
fidelity error is vanishing, and the Rabi oscillation by the
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(a)

FIG. 3. �Color online� �a� Fidelity F for CNOT gate as a func-
tion of g at �0t=�. The main �dark arrow� and subsidiary �light
arrow� maxima correspond to the commensurate modes in Figs.
2�a� and 2�b�, respectively. Here we set J /h=0.5 GHz and �0

=4 GHz. Inset shows the fidelity envelops as a function of �0 for
g /h=0.265 GHz and J /h=0.5 GHz. �b� Fidelity F as a function of
J for g /h=0.265 GHz and �0=4 GHz. Inset shows F for different
g’s.

00

FIG. 4. �Color online� Rabi-type oscillations of occupation
probabilities of �

�� states for strongly coupled qubits with the
initial state ��0�= ��00�+ �10�� /�2. Here the parameters are J /h
=5 GHz, �0 /2�=4 GHz, and �0 /2�=600 MHz at the degen-
eracy point where E↓↓=E↓↑ in Fig. 1�a�.
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Hamiltonian H̃ in Eqs. �21� and �22� is close to �F�10−4 for
the fault-tolerant quantum computing. Hence for a weak cou-
pling as well as a strong coupling we can achieve high per-
formance CNOT gate operation.

V. SUMMARY

The commensurate oscillations of resonant and nonreso-
nant modes enable the high fidelity CNOT gate operation by
finely tuning the oscillating field amplitude for any given
values of qubit energy gap and coupling strength between
qubits. While for a sufficiently strong coupling the CNOT
gate can be achieved for any given parameter values, for a
weak coupling a relation between the parameters should be
satisfied for the fidelity maxima. For a sufficiently weak cou-
pling compared to the qubit energy gap, J /��0�1, we have
�1�1 and 
1�0, resulting in the expression for g in Eq.
�29�. For J /��0�1, Eq. �29� immediately gives rise to the
relation g /J�1 and thus g /��0�1 after some manipulation.
This means that for a weak coupling J /��0�1 the numeri-
cal results are well fit with the RWA as shown in Table I,
because the RWA is good for g /��0�1. As a result, the high
performance CNOT gate operation can be achieved as shown
in Fig. 5.
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FIG. 5. �Color online� The errors of fidelity, �F=1−F, at the
main peak for various values of J and �0 at �0t=�.
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